6,129 research outputs found

    Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities

    Full text link
    We analyze microwave cavity perturbation methods, and show that the technique is an excellent, precision method to study the dynamic magnetic and dielectric response in the GHzGHz frequency range. Using superconducting cavities, we obtain exceptionally high precision and sensitivity for measurements of relative changes. A dynamic electromagnetic susceptibility ζ~(T)=ζ′+iζ′′\tilde{\zeta}(T)=\zeta ^{\prime}+i\zeta ^{\prime \prime} is introduced, which is obtained from the measured parameters: the shift of cavity resonant frequency δf\delta f and quality factor QQ. We focus on the case of a spherical sample placed at the center of a cylindrical cavity resonant in the TE011TE_{011} mode. Depending on the sample characteristics, the magnetic permeability μ~\tilde{\mu}, the dielectric permittivity ϵ~\tilde{\epsilon} and the complex conductivity σ~\tilde{\sigma} can be extracted from ζ~H\tilde{\zeta}_{H}. A full spherical wave analysis of the cavity perturbation is given. This analysis has led to the observation of new phenomena in novel low dimensional materials.Comment: 16 pages, 5 figure

    Catalytic kinetic spectrophotometric determination of trace copper with copper(II)- p-acetylchlorophosphonazo-hydrogen peroxide system

    Get PDF
    Copper(II) catalyzes the oxidation of p-acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically by measuring the decrease in the absorbance of CPApA at the wavelength of 554 nm using the fixed-time method. The optimum reaction conditions are as follows: H3PO4 (1.00 M) 1.0 mL, CPApA (2.19 × 10-4 M) 1.5 mL, H2O2(4.30 × 10-2 M) 1.2 mL, reaction temperature 100 oC and reaction time 13 min. The linear range for the determination of copper(II) is 0.020-0.30 μg/mL. The limit of detection is 10.94 ng/mL. The method was satisfactorily used to determine copper in tomato and cucumber samples. The relative standard deviation of thirteen replicate determinations was 1.20-1.34% and the recovery of the method was 99.5-103.9%

    Kinetic spectrophotometric determination of iron based on catalytic oxidation of p-acetylarsenazo

    Get PDF
    A novel catalytic kinetic spectrophotometric method for the determination of iron is developed based on the catalytic effect of Fe(III) on the oxidation reaction of p-acetylarsenazo(ASApA) by potassium periodate. Maximum absorbance of the Fe(III)-ASApA-KIO4 system in 8.0 × 10-3 M sulfuric acid occurs at the wavelength of 540 nm. The change in absorbance (DA) is linearly related with the concentration of iron(III) in the range of 0.10-4.0 ng/mL and fitted the equation: DA = 4.91 × 10-2 C (C: ng/mL) + 0.017, with a regression coefficient of 0.9966 at the wavelength. The detection limit of the method is 0.031 ng/mL. The relative standard deviation of the method was from 1.34% to 1.78% for 11 replicate determinations. The standard addition recovery of the method ranged from 95.71% to 103.3%. The method was used to determine iron in the black gingili paste, oat slice, sleeve-fish silk food samples. The determined results were in agreement with those byatomic absorption spectrometry

    Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator

    Full text link
    We demonstrate a diode-laser-pumped system for generation of quadrature squeezing and polarization squeezing. Due to their excess phase noise, diode lasers are challenging to use in phase-sensitive quantum optics experiments such as quadrature squeezing. The system we present overcomes the phase noise of the diode laser through a combination of active stabilization and appropriate delays in the local oscillator beam. The generated light is resonant to the rubidium D1 transition at 795nm and thus can be readily used for quantum memory experiments.Comment: 6 pages 4 figure

    Drought events and their effects on vegetation productivity in China

    Get PDF
    Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)

    Effects of Three Gorges Reservoir (TGR) water storage in June 2003 on Yangtze River sediment entering the estuary

    No full text
    International audienceThe world-greatest water conservancy project, Three Gorges Reservoir (TGR), stored water for the first time in June 2003, which provides an excellent opportunity to examine its effects on the sediment entering the Yangtze River estuary. A daily record dataset of water discharge and suspended sediment concentration (SSC) of the Yangtze River measured at Datong (the controlling hydrological gauging station into the estuary) from May 15 to July of 2003 spanning the water storage, together with a monthly record dataset of runoff, sediment load and SSC measured at Datong from 1953 to 2003, were used to examine the effects of the TGR water storage in June 2003 on the Yangtze River sediment entering the estuary. The results show that the unnaturally clearer water due to the TGR sedimentation resulted by the water storage in June 2003 brought the Yangtze River markedly decreased SSC and sediment load entering the estuary both during the TGR water storage and in the second half year of 2003. The Yangtze River water and sediment discharges into the estuary from 15 May to 15 July in 2003 spanning the TGR water storage clearly indicated three phases: (1) pre-water storage of the TGR from 15 May to 25 May, during this phase, SSC and sediment load increased with water discharge increasing; (2) water storage of the TGR from 25 May to 10 June (including the preparation phase from 25 May to 31 May), during this phase, SSC and sediment load decreased dramatically with water discharge decreasing; and (3) post-water storage of the TGR, at the beginning, SSC, sediment load and water discharge basically remained at a relatively low value until the end of June, and since then, SSC and sediment load increased gradually with water discharge increasing. In addition, the real total sediment load was reduced by 2456.07×104 t than the estimated total sediment load during the period from 27 May to 2 July in 2003

    Non-quasiparticle microwave absorption in Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    We show that a non-quasiparticle charge collective mode, in parallel and coincident with the d-wave pair conductivity, leads to a quantitative understanding of microwave surface impedance measurements on superconducting Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}. The analysis suggests an inhomogeneous charge ground state in Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta} and other HTS.Comment: 6 pages, 3 figure
    • …
    corecore